Tag: creative thinking authors

Logic Can Get You From A to B; Imagination Can Get You Anywhere

Einstein often said that imagination is more important than knowledge. Here is how he explained time as the fourth dimension in his unified theory: “Imagine a scene in two-dimensional space, for instance, the painting of a man reclining upon a bench. A tree stands behind the bench. Then imagine the man walks from the bench to a rock on the other side of the tree. He cannot reach the rock except by walking in back of the tree. This is impossible to do in two-dimensional space. He can reach the rock only by an excursion into the third dimension. Now imagine another man sitting on the bench. How did the other man get there? Since the two bodies cannot occupy the same place at the same time, he can have reached there only before or after the first man moved. In other words, he must have moved in time. Time is the fourth dimension.

Think of how Einstein changed our understanding of time and space by imagining people going to the center of time in order to freeze their lovers or their children in century-long embraces. This space he imagined is clearly reminiscent of a black hole, where, theoretically, gravity would stop time. Einstein also imagined a woman’s heart leaping and falling in love two weeks before she has met the man she loves, which lead him to the understanding of acausality, a feature of quantum mechanics. And still another time he imagined a blind beetle crawling around a sphere thinking it was crawling in a straight line.
Try to solve the following thought experiment before you read the paragraph that follows it.

Thought Experiment. One morning, exactly at sunrise, a Buddhist monk began to climb a tall mountain. The narrow path, no more than a foot or two wide, spiraled around the mountain to a glittering temple at the summit. The monk ascended the path at a varying rate of speed, stopping many times along the way to rest and to eat the dried fruit he carried with him. He reached the temple shortly before sunset. After several days of fasting and meditation, he began his journey back along the same path, starting at sunrise and again walking at a varying speed with many stops along the way. His average speed descending was, of course, greater than his average climbing speed. Is there a spot along the path that the monk will occupy on both trips at precisely the same time of day?

If you try to logically reason this out or use a mathematical approach, you will conclude that it is unlikely for the monk to find himself on the same spot at the same time of day on two different occasions. Instead, visualize the monk walking up the hill, and at the same time imagine the same monk walking down the hill. The two figures must meet at some point in time regardless of their walking speed or how often they stop. Whether the monk descends in two days or three days makes no difference; it all comes out to the same thing.

Now it is, of course, impossible for the monk to duplicate himself and walk up the mountain and down the mountain at the same time. But in the visual image he does; and it is precisely this indifference to logic, this superimposition of one image over the other, that leads to the solution. Imagination gives us the impertinence to imagine making the impossible possible.

The imaginative conception of the monk meeting himself blends the journeys up and down the mountain and superimposes one monk on the other at the meeting place. The ancient Greeks called this kind of thinking homoios which means “same.” They sensed that this was really a kind of mirror image of the dream process, and it led to art and scientific revelations.


Since ancient Greece, cognitive scientists have discovered that the brain is a dynamical system—an organ that evolves its patterns of activity rather than computes them like a computer. It thrives on the creative energy of feedback from experiences either real or fictional. An important point to remember is that you can synthesize experience, literally create it in your imagination. The human brain cannot tell the difference between an “actual” experience and an experience imagined vividly and in detail.

The real key to turning imagination into reality is acting as if the imagined scene were real. Instead of pretending it is a scene from the future, Einstein imagined it as though he was truly experiencing it in the present. He imagined it as a real event in the now. The great masters of antiquity have told us through the ages that whatever you believe you become. If you believe and imagine in the now that you are whatever you wish to be, then reality must conform.

Thought Experiment. Think of something in your business that is impossible to do, but that would, if it were possible to do, change the nature of your business forever.

Think of an impossibility, then try to come up with ideas that take you as close as possible to that impossibility. For example, imagine an automobile that is a live, breathing creature, List attributes of living creatures. They are, for example, breathing, growing older, reproducing, feeling emotions, and so on. Then use as many of those attributes as you can while designing your automobile. For instance, can you work emotions into something that a car displays?

Japanese engineers for Toyota are working on a car that they say can express moods ranging from angry to happy to sad. The car can raise or lower its body height and ‘‘wag’’ its antenna, and it comes equipped with illuminated hood designs, capable of changing colors, that are meant to look like eyebrows, eyes, and even tears. The car will try to approximate the feelings of its driver by drawing on data stored in an onboard computer. So, for example, if another car swerves into an expressive car’s lane, the right combination of deceleration, brake pressure, and defensive steering, when matched with previous input from the driver, will trigger an ‘‘angry’’ look.

The angry look is created as the front-end lights up with glowing red U-shaped lights, the headlights become hooded at a forty-five-degree angle, and downward-sloping “eyebrow” lights glow crimson. A good-feeling look is expressed by the front-end lights glowing orange, and one headlight winks at the courteous driver and wags its antennae. A sad-feeling look is blue with “tears” dripping from the headlights.

Stretching your imagination by trying to make impossible things possible with concrete thoughts and actions is a mirror reversal of dreaming. Whereas a dream represents abstract ideas as concrete actions and images, this creative process works in the opposite direction, using concrete ideas (a car that is alive) to gain insight on a conscious level to reveal disguised thoughts (about cars showing emotion) as creative imagery.

Michael Michalko is a highly-acclaimed creativity expert and author of THINKERTOYS, CRACKING CREATIVITY, CREATIVE THINKERING, AND THINKPAK (A brainstorming card deck).

Creative Thinking Habit: Always Look at Problems with Multiple Perspectives

Leonardo da Vinci always assumed that his first way of looking at a problem was too biased toward his usual way of thinking. He would always look at a problem from at least three different perspectives to get a better understanding. It has been my observation that people who pride themselves on their ability to think logically and analytically ignore his advice and trust their usual way of thinking

Peter Cathcart Wason was a cognitive psychologist at University College, London who pioneered the Psychology of Reasoning. He progressed explanations as to why people make certain consistent mistakes in logical reasoning. The problem described below is a variation on the Wason selection task that was devised by Peter Wason. The Wason selection task was originally developed as a test of logical reasoning, but it has increasingly been used by psychologists to analyze the structure of human reasoning mechanisms.

Consider the following problem. Four cards are laid out with their faces displaying respectively, an E, a K, a 4 and a 7.

You are told that each card has a letter on one side and a number on the other. You are then given a rule, whose truth you are expected to evaluate. The rule is: “If a card has a vowel on one side, then it has an even number on the other.” You are then allowed to turn over two, but only two, cards in order to determine whether the rule is correct as stated.

Which two cards do you turn over?

If you worked this problem silently, you will almost certainly miss it, as have the large percentage of subjects to whom it has been presented. Most subjects realize that there is no need to select the card bearing the consonant, since it is irrelevant to the rule; they also appreciate that it is essential to turn over the card with the vowel, for an odd number opposite would prove the rule incorrect.

The wording of the problem determines the perspective most people mentally default to almost immediately. Most people assume that the object is to examine the cards to ascertain that if a card has a vowel on one side, then it has an even number on the other; and if a card has an even number on one side, then it has a vowel on the other side. This assumption leads them to make the fatal error of picking the card with the even number, because the even number is mentioned in the rule. But, in fact, it is irrelevant whether there is a vowel or a consonant on the other side, since the rule does not take a stand on what must be opposite to even numbers.

On the other hand, it is essential to pick the card with the odd number on it. If that card has a consonant on it, the result is irrelevant. If, however, the card has a vowel on it, the rule in question has been proved incorrect, for the card must (according to the rule) have an even (and not an odd) number on it.

The content of this specific problem influenced the way we constructed our perception of the problem. This perception created the assumption that leads to error. This should give one pause about mentally defaulting to first impressions.

“If a card has a vowel on one side, then it has an even number on the other.” Here we are working with letters and numbers. Transposing the words to read “If a card has an even number on one side, then……….” Clarifies the problem and gives us a different perspective on even numbered cards. It becomes apparent that what even numbered cards have on the other side has no significance. The rule is only concerned with cards that have vowels on one side.

Sigmund Freud would “reframe” something to transform its meaning by putting it into a different framework or context than it has previously been perceived. For example, by reframing the “unconscious” as a part of him that was “infantile,” Freud began to help his patients change the way they thought and reacted to their own behavior.

The important thing is not to persist with one way of looking at the problem. Consider the following interesting twist, again using four cards. This time, however, we reframe the problem by substituting journeys and modes of transportation for letters and numbers. Each card has a city on one side and a mode of transportation on the other.


This time, the cards have printed on them the legends, respectively, Los Angeles, New York, airplane, and car; and the rule is reframed to read: “Every time I go to Los Angeles, I travel by airplane. While this rule is identical to the number-letter version, it poses little difficulty for individuals. In fact, now 80 percent of subjects immediately realize the need to turn over the card with “car” on it.

Apparently, one realizes that if the card with “car” on it has the name “Los Angeles” on the back, the rule has been proved incorrect; whereas it is immaterial what it says on the back of the airplane since, as far as the rule is concerned, one can go to New York any way one wants.

Why is it that 80 percent of subjects get this problem right, whereas only 10 percent know which cards to turn over in the vowel-number version? By changing the content (cities and modes of transportation substituted for letters and numbers), we restructured the problem, which dramatically changed our reasoning. The structure of a problem colors our perspective and the way we think.

The significant point about this test is that we are incredibly bad at it. And it doesn’t make much difference what the level of education is of the person taking the test. Moreover, even training in formal logic seems to make little difference to a person’s performance. The mistake that we tend to make is fairly standard. People almost always recognize that they have to pick up the card with the vowel, but they fail to see that they also have to pick up the card with the odd number. They think instead that they have to pick up the card with the even number.

One of the most interesting things about this phenomenon is that even when the correct answer is pointed out, people feel resistance to it. It apparently feels “right” that the card with the even number should be picked up. It feels right because your initial perspective is biased toward the usual way of thinking. It is only when you look at it from different perspectives that you get a deeper understanding of the problem.


Learn the creative thinking habits from history’s greatest creative geniuses.  Read https://www.amazon.com/Cracking-Creativity-Secrets-Creative-Genius/dp/1580083110/ref=pd_sim_14_2?ie=UTF8&psc=1&refRID=CAJTPVGTFC7R940PAQSN

Creative Thinking Technique: Combine Ideas from Different Domains

Many breakthroughs are based on combining information from different domains that are usually not thought of as related. Integration, synthesis both across and within domains, is the norm rather than the exception. Ravi Shankar found ways to integrate and harmonize the music of India and Europe; Paul Klee combined the influences of cubism, children’s drawings, and primitive art to fashion his own unique artistic style; Salvador Dali integrated Einstein’s theory of relativity into his masterpiece Nature Morte Vivante, which artistically depicts several different objects simultaneously in motion and rest. And almost all scientists cross and recross the boundaries of physics, chemistry, and biology in the work that turns out to be their most creative.

ASK PEOPLE IN DIFFERENT DOMAINS FOR IDEAS. Another way to combine talent is to elicit advice and information about your subject from people who work in different domains. Interestingly, Leonardo da Vinci met and worked with Niccolô Machiavelli, the Italian political theorist, in Florence in 1503. The two men worked on several projects together, including a novel weapon of war: the diversion of a river. Professor Roger Masters of Dartmouth College speculates that Leonardo introduced Machiavelli to the concept of applied science. Years later, Machiavelli combined what he learned from Leonardo with his own insights about politics into a new political and social order that some believe ultimately sparked the development of modern industrial society.

Jonas Salk, developer of the vaccine that eradicated polio, made it a standard practice to interact with men and women from very different domains. He felt this practice helped to bring out ideas that could not arise in his own mind or in the minds of people in his own restricted domain. Look for ways to elicit ideas from people in other fields. Ask three to five people who work in other departments or professions for their ideas about your problem. Ask your dentist, your accountant, your mechanic, etc. Describe the problem and ask how they would solve it.

Listen intently and write down the ideas before you forget them. Then, at a later time, try integrating all or parts of their ideas into your idea. This is what Robert Bunsen, the chemist who invented the familiar Bunsen burner, did with his problem. He used the color of a chemical sample in a gas flame for a rough determination of the elements it contained. He was puzzled by the many shortcomings of the technique that he and his colleagues were unable to overcome, despite their vast knowledge of chemistry. Finally, he casually described the problem to a friend, Kirchhoff, a physicist, who immediately suggested using a prism to display the entire spectrum and thus get detailed information. This suggestion was the breakthrough that led to the science of spectrography and later to the modern science of cosmology.

EXAMPLES. Physicists in a university assembled a huge magnet for a research project. The magnet was highly polished because of the required accuracy of the experiment. Accidentally, the magnet attracted some iron powder that the physicists were unable to remove without damaging the magnet in some way. They asked other teachers in an interdepartmental meeting for their ideas and suggestions. An art instructor came up with the solution immediately, which was to use modeling clay to remove the powder.

The CEO of a software company looked for ways to motivate employees to participate more actively in the creative side of the business. They wanted employee ideas for new processes, new products, improvements, new technologies and so on. He tried many things but nothing seemed to excite and energize employees to become more creative.

One evening at a dinner with some of his friends he mentioned his problem and asked them for ideas. After a brief discussion, a friend who was a stockbroker suggested thinking ways to parallel ideas with stocks. Look for ways for people to buy and sell ideas the same way his customers study, buy and sell stocks on the stock exchange.

The CEO was intrigued with the novelty of the idea and he and his stockbroker friend looked for patterns between the stock exchange and an internal employee program. They blended the architecture of the stock exchange with the internal architecture of their company’s internal market to create the company’s own stock exchange for ideas. Their exchange is called Mutual Fun. Any employee can propose that the company acquire a new technology, enter a new business, make a new product or make an efficiency improvement. These proposals become stocks, complete with ticker symbols, discussion lists and e-mail alerts.

 Fifty-five stocks are listed on the company’s internal stock exchange. Each stock comes with a detailed description — called an expectus, as opposed to a prospectus — and begins trading at a price of $10. Every employee gets $10,000 in “opinion money” to allocate among the offerings, and employees signal their enthusiasm by investing in a stock and, better yet, volunteering to work on the project. Employees buy or sell the stocks, and prices change to reflect the sentiments of the company’s executives, engineers, computer scientists, project managers, marketing, sales, accountants and even the receptionist.

The result has been a resounding success. Among the company’s ‘ core technologies are pattern-recognition algorithms used in military applications, as well as for electronic gambling systems at casinos. A member of the administrative staff, with no technical expertise, thought that this technology might also be used in educational settings, to create an entertaining way for students to learn history or math. She started a stock called Play and Learn (symbol: PL), which attracted a rush of investment from engineers eager to turn her idea into a product. Lots of employees got passionate about the idea and it led to a new line of business.

INVITE OTHER DEPARTMENTS TO JOIN YOUR BRAINSTORMING SESSION. If you’re brainstorming a business problem in a group, try asking another department to join yours. For example, if you are in advertising and want to create a new product advertising campaign, ask people from manufacturing to join your session. Separate the advertising and manufacturing people into two groups. Each group brainstorms for ideas separately. Then combine the groups and integrate the ideas.


For more ideas on how to combine dissimilar subjects to create new ideas read Cracking Creativity: The Secrets of Creative Genius by Michael Michalko

How to Get Ideas while Dozing

In the history of art, most people could easily argue that Salvador Dalí is the father of surrealistic art. Surrealism is the art of writing or painting unreal or unpredictable works of art using the images or words from an imaginary world. Dali’s art is the definition of surrealism. Throughout his art he clearly elaborates on juxtaposition (putting similar images near each other), the disposition (changing the shape of an object), and morphing of objects, ranging from melted objects dripping, to crutches holding distorted figures, to women with a heads of bouquets of flowers.

Dali was intrigued with the images which occur at the boundary between sleeping and waking. They can occur when people are falling asleep, or when they are starting to wake up, and they tend to be extremely vivid, colorful and bizarre. His favorite technique is that he would put a tin plate on the floor and then sit by a chair beside it, holding a spoon over the plate. He would then totally relax his body; sometimes he would begin to fall asleep. The moment that he began to doze the spoon would slip from his fingers and clang on the plate, immediately waking him to capture the surreal images.

The extraordinary images seem to appear from nowhere, but there is a logic. The unconscious is a living, moving stream of energy from which thoughts gradually rise to the conscious level and take on a definite form. Your unconscious is like a hydrant in the yard while your consciousness is like a faucet upstairs in the house. Once you know how to turn on the hydrant, a constant supply of images can flow freely from the faucet. These forms give rise to new thoughts as you interpret the strange conjunctions and chance combinations.

Surrealism is the stressing of subconscious or irrational significance of imagery, or in more simplistic terms, the use of dreamlike imagery. Dalí’s absurd imagination has him painting pictures of figures no person would even dream of creating.  Following is a blueprint Dali’s technique.


  • Think about your challenge. Consider your progress, your obstacles, your alternatives, and so on. Then push it away and relax.
  • Totally relax your body. Sit on a chair. Hold a spoon loosely in one of your hands over a plate. Try to achieve the deepest muscle relaxation you can. 
  • Quiet your mind. Do not think of what went on during the day or your challenges and problems. Clear your mind of chatter.
  • Quiet your eyes. You cannot look for these images. Be passive. You need to achieve a total absence of any kind of voluntary attention. Become helpless and involuntary and directionless. You can enter the hypnogogic state this way, and, should you begin to fall asleep, you will drop the spoon and awaken in time to capture the images.
  • Record your experiences immediately after they occur. The images will be mixed and unexpected and will recede rapidly. They could be patterns, clouds of colors, or objects.
  • Look for the associative link. Write down the first things that occur to you after your experience. Look for links and connections to your challenge. Ask questions such as:

What puzzles me?

Is there any relationship to the challenge?

Any new insights? Messages?

What’s out of place?

What disturbs me?

What do the images remind me of?

What are the similarities?

What analogies can I make?

What associations can I make?

How do the images represent the solution to the problem?

A restaurant owner used this technique to inspire new promotion ideas. When the noise awakened him, he kept seeing giant neon images of different foods: neon ice cream, neon pickles, neon chips, neon coffee, and so on. The associative link he saw between the various foods and his challenge was to somehow to use the food itself as a promotion.

The idea: He offers various free food items according to the day of week, the time of day, and the season. For instance, he might offer free pickles on Monday, free ice cream between 2 and 4 P.M. on Tuesdays, free coffee on Wednesday nights, free sweet rolls on Friday mornings, free salads between 6 and 8 P.M. on Saturdays and so on. He advertises the free food items with neon signs, but you never know what food items are being offered free until you go into the restaurant. The sheer variety of free items and the intriguing way in which they are offered has made his restaurant a popular place to eat.

Another promotion he created as a result of seeing images of different foods is a frequent-eater program. Anyone who hosts five meals in a calendar month gets $30 worth of free meals. The minimum bill is $20 but he says the average is $30 a head. These two promotions have made him a success.

The images you summon up with this technique have an individual structure that may indicate an underlying idea or theme. Your unconscious mind is trying to communicate something specific to you, though it may not be immediately comprehensible. The images can be used as armatures on which to hang new relationships and associations.


To discover more creative-thinking techniques read CRACKING CREATIVITY (THE SECRETS OF CREATIVE GENIUS) by Michael Michalko